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Abstract

Modelling deforestation involves a combination of multiple scientific
fields (Economy, Ecology, Geography, Political Sciences, etc.), spatial
scales (micro, regional, national or global) and economic agents inter-
acting with each other in very complex ways. Since decades, hundreds
of models have been created to assess this issue. The aim of this paper
is not to review exhaustively all the work done, but to propose a con-
cise synthesis of the objectives, strengths or weaknesses of the main
deforestation models, based on published reviews and original studies.
No national or regional study publicly available specifically focused on
the Guiana Shield, but a review of models produced elsewhere may
lead to relevant conclusions for that region. The main conclusions of
this work are the following:

e no universal drivers of deforestation can be brought out. Instead,
a focus on local context (present and historical) is a necessity;

e absolute deforestation (area deforested per year) is the depen-
dent variable that would preferentially be used to build models
of deforestation;

e in order to take into account the differences between the local
geographic processes influencing the spatial potential of defor-
estation at small scales and the socio-economic processes leading
demand for land at a broader scale, a distinction between factors
influencing the location of deforestation and factors influencing
its intensity can be made;

e this distinction implies the use of different types of modelling
frameworks for considering apart the location of deforestation
and its intensity: Random Forest classifier offers good perspec-
tives for the first part, whereas Poisson regression and associated
quasi-poisson or negative binomial are of great interest for mod-
elling count data like absolute deforestation.

This study was led with the financial and technical support of the
REDD+ for the Guiana Shield project. The REDD+ for the Guiana
Shield is a cooperation project between Suriname, Guyana, French
Guiana and Amapa State of Brasil. It is funded by the European
ERDF/FEDER Interreg Caraibes IV funds, FFEM, ONF and Région
Guyane.



Introduction

Deforestation is a complex and multidisciplinary process. Modelling defor-
estation is an economic issue, as it deals with human activities producing
land use changes, as well as an object of interest for geographers, dealing
with spatial organization of the territory, or environmental scientists, con-
cerned about the human impact on ecosystems (De Pinto and Nelson, 2007).
It also involves political studies, because public policies strongly influence
the development of a given region which in turn affects its deforestation
rates. Finally, the historical dimension must not be forgotten (Geist and
Lambin, 2002), as past political decisions and all kind of events can become
long term drivers of development trends and deforestation.

A review by Angelsen and Kaimowitz (1999) introduced different categories
of economic models of deforestation based on the scale (household, sub-
national or national) and on the methodology used (analytical, simulation
or regression models). This classification is general and is applicable for
other models that are not explicitly economic. It helps to focus on the types
of models which are relevant in the frame of a given study. However, these
categories are not independent. The firsts mainly focus on the processes
leading to deforestation, and as such concern more frequently household
studies where these processes can be analyzed at small scales, whereas the
others try in the first place to explicit where and how much deforestation did
(regression) / will (simulation) occur, generally at a broader scale (Angelsen
and Kaimowitz, 1999), although their conclusions may help to formulate
some hypothesis concerning the ultimate drivers of deforestation.

To be consistent with the scale and objectives of the REDD+ Guiana Shield
Project, this report will mainly focus on national studies using regression
(econometric models) or simulation models. However, sub-national and an-
alytical studies are also taken into account when useful and necessary, as
larger scale regression analysis cannot capture the impact of economic agents
behaviour and the local heterogeneity in the drivers of deforestation. In a
first section, general insights on the drivers of deforestation will be presented
and debated. Next, model structuration will be discussed, with a focus on
methodological issues which are a consequence of the specificities of the
Guiana Shield. Finally, main modelling tools allowing to create a model for
the location of deforestation and another for its intensity will be presented.



1 Identifying the drivers of deforestation

1.1 Proximate causes and underlying drivers of deforestation

Identifying the drivers of deforestation is a prerequisite to modelling this
process. Two types of potential drivers are generally distinguished: prox-
imate (direct) and underlying causes (indirect) of deforestation (Angelsen
and Kaimowitz, 1999; Geist and Lambin, 2002).

Agricultural expansion is an example of proximate cause of deforestation.
Agriculture is a land consuming activity: in forested areas, its expansion
directly provokes deforestation. Population can be considered as an under-
lying force of deforestation: its growth may favour an increase in the demand
for agricultural products which in turn increases deforestation rates. Forest
logging, depending on the context, can be considered as either a direct or in-
direct deforestation driver (Angelsen and Kaimowitz, 1999): unsustainable
logging leads to forest degradation and deforestation; but even sustainable
logging, by opening tracks inside the forest, may increase its accessibility
and have the same consequences.

Proximate causes are preferred in micro-scale studies, whereas underlying
forces are more common in macro-studies where they provide more conclu-
sive results (Kaimowitz and Angelsen, 1998). However, a strict distinction
between those two types is still subject to discussions, as some factors can
be at a same time proximate or underlying factors depending on the point
of view: agricultural subsidies, for example, are an underlying factor of de-
forestation when they respond to local demand for land. But they could be
seen as a direct cause of deforestation when they create a demand for land.

Figure 1 page 4 shows a schematical representation of the links between
some drivers and deforestation. Underlying processes lead to deforestation
indirectly, through the expression of direct factors, and local potential of
deforestation expresses through the effect of socio-economic drivers.
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Figure 1: Representation of the links between some drivers and the process of deforestation. Underlying processes
lead to deforestation indirectly, through the expression of direct factors, and local potential of deforestation
expresses through the effect of socio-economic drivers.



1.2 Defining universal factors of deforestation?

The review of around 150 economic models of deforestation by Kaimowitz
and Angelsen (1998) concluded that:

Deforestation tends to be greater when: forested lands are more
accessible; agricultural and timber prices are higher; rural wages are
lower; and there are more opportunities for long distance trade. Pop-
ulation and migration both affect deforestation rates, but in a complex
fashion that cannot simply be reduced to saying population growth pro-
motes deforestation. Major doubts remain regarding the relationships
between deforestation and productivity growth, input prices, land mar-
kets, land and forest tenure security, and household income (poverty)

[..]

Despite much concern on economic variable, other geographic, political or
geophysical variables are also used as explanatory variables. Soil suitability
for agriculture may also be a relevant deforestation driver, as mentioned by
Chomitz and Gray (1996) and Miiller et al. (2012): slope, rainfall (excessive
or deficient), fertility may favour or prevent agricultural development and
deforestation. Besides, political aspects, like the creation of national parks
or the recognition of indigenous territories may also impede deforestation
(Miiller et al., 2012; Soares-Filho et al., 2006; Rosa et al., 2013), although
their efficiency is not absolute (Soares-Filho et al., 2006).

However, following Geist and Lambin (2002), no universal causal effect can
be identified, most of the drivers of deforestation being region specific.

Mahapatr and Kant (2005) identified multiple drivers of deforestation, each
having potential opposite effects on the dependant variable deforestation.
Each factor belongs to one of six sectors: forest, demography, macro-economy,
agriculture, infrastructure and politics:

e the percentage of forest cover is an indicator of the accessibility of a
territory. For a same infrastructure network, the forest ecosystems of a
country with low forest cover will face more pressure than in a country
with a high remaining forest cover. However, with a high forest cover,
a ’free common good attitude’ can emerge and lead to less protection
and more deforestation;




e population growth could create a Malthusian (increasing pressure on
agricultural products create incentives to the expansion of agriculture)
or Boserup (more people could enhance creativity and the development
of new technologies to face the problem of deforestation) effect in dif-
ferent contexts;

e economic growth could have negative effects on deforestation rates if
the hypothesis of the environmental Kuznet’s curve is true: poor peo-
ple would destroy their environment in order to survive, while a grow-
ing economy would create off-farm employment and allow availability
of capitals for forest protection. However, more investments in remote
region could also favour deforestation, especially if the demand for
agricultural and forest products is increasing because of the favourable
economic situation;

e credits can be used for importing products or developing new technolo-
gies in the alternate energy sector thus leading to less deforestation.
However, an increasing debt service could also lead to short term de-
cisions forgetting the long term scale which is necessary for protecting
the environment;

e agricultural growth could lead to an expansion of agriculture or an
intensification of the production, which would have opposite impacts
on deforestation;

e road development promotes a better accessibility enhancing deforesta-
tion, but may also allow better control, protection and forest manage-

ment;

e finally, in high level of democracy countries, checks and balance would
avoid illegal deforestation, and public pressure may promote environ-
mental protection measures. But in this situation, less fear of punish-
ment could also lead to the opposite observation.

This analysis may explain why defining common explaining variables in a
heterogeneous context is so difficult, and why it is necessary to take into
account each regional or local context.

1.3 The case of the Guiana Shield

Concerning the Guiana Shield, a review of local models of deforestation is
impossible, as no published national or regional study were found. A regional



study by Miranda et al. was led but no published work was available. More-
over, this work was done using expensive softwares confirming the need to
provide an open source and publicly available model of deforestation for the
region. Instead, the case of Amazon deforestation is well documented but
the scale of the ongoing processes is then very different than for the Guianas.

The deforestation model presented in the study by Soares-Filho et al. (2006)
includes French Guiana, Guyana and Suriname. However, because

systematic deforestation map series [were] not available for [...]
subregions [outside Brazil] [...], deforestation rates and their annual
variation were assigned by applying figures from subregions of Brazil
that were considered similar in frontier type and age (see article’s sup-
plementary information).

As we see, given the importance of considering local contexts, it is unlikely
that this model would provide consistent predictions for the Guiana Shield.
This is particularly true if we consider the specific context of the Guianas,
where deforestation rates are among the lowest in the world, whereas annual
deforestation in Brazilian Amazon was much higher.

Moreover, in the case of the Guianas, beside more classic forces of defor-
estation included in many studies as logging, infrastructure building or agri-
cultural expansion, mining (legal or illegal) in forest is a huge and some-
what original deforestation driver (Plouvier et al., 2012). This particular
driver may be susceptible to world gold prices (Hammond et al., 2007) and
might be influenced by political decisions that could favour or not new ex-
ploitation authorizations. A particular attention and specific explanatory
variables should probably be used in that case, as no known deforestation
model specifically focused on that driver of deforestation. For example, the
criteria of accessibility, which is always considered as an important driver of
deforestation, might impede instead of encouraging this activity, especially
in the case of illegal gold-mining.



2 Model’s structuration

2.1 Choosing the appropriate dependent variable

Once potential drivers of deforestation are identified, an appropriate depen-
dent variable still has to be defined before starting the modelling process.
In order to measure deforestation, forest cover maps are produced and com-
pared at different periods, relying on an existing forest definition. A 30%
threshold is usually considered as an international standard (IGBP, 1992),
however we can wonder if this threshold is always appropriate given the huge
heterogeneity of forest ecosystems around the world. Calculating forest ex-
tent for different forest thresholds between 5 and 99% in French Guiana,
we showed that this choice had little impact on total forest cover for values
lower than 90%, confirming that for dense tropical rainforests this choice
didn’t significantly affect results on forested area (see Figure 2 page 9).

In a review of different studies focusing on deforestation by Brown and
Pearce (1994), the possible dependent variables are:

e remaining forest cover (percentage or absolute);
e deforestation as a percentage of a region’s area;

e absolute deforestation (area of forest cover lost per year).

Choosing the appropriate unit for measuring deforestation is not a trivial
issue, although remaining forest cover is necessarily correlated to deforesta-
tion.

Current forest cover in a given country (absolute or percentage) depends
on the original forest surface (forest cover before human settlement began)
and on the history of land use change. Modelling deforestation would allow
a comparison between different countries/regions only if the original forest
area is the same, and if the history of deforestation began at the same pe-
riod and followed the same trends. An alternative would be to be able to
estimate the original forest cover for each country/region (which could be
possible for the Guianas) and to know their respective deforestation process
history with low uncertainties. The latter is a more unrealistic assumption.
Moreover, the results of these studies are entirely expected, as mentioned by
Brown and Pearce (1994): ’'very few human settlements are found in forests
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Figure 2: Estimated forested area in thousand square kilometers in function
of the forest crown cover threshold defined.



and very few forests are found in human settlements; as such, we would
expect that there will always be a negative relationship between forest cover
and, for example, roads and population. This is simply logical but it does
not say anything about the causes of ongoing deforestation.’

Following Brown and Pearce (1994), only the last one (absolute forest cover
loss per year) should be used in deforestation studies, because remaining for-
est cover and deforestation rates are more biaised by unmeasured geographic
and historical factors, compared to a direct measure of absolute deforesta-
tion. Today’s context explains directly how forest cover loss (deforestation
is a function of economic, demographic, political contexts) is changing, but
indirectly explains how much forest cover remains (remaining forest cover is
a function of original forest cover, current deforestation, and past deforesta-
tion which is mainly unknown).

More concretely, using percentages to characterize deforestation in the spe-
cific case of the Guiana Shield might be inaccurate just because of the very
unequal administrative subdivisions of the different countries. Indeed, tak-
ing the example of French Guiana, comparing a percentage of deforestation
in Cayenne district(administrative area of around 20 sq.km) and in Maripa-
soula district (around 18’000 sq.km) would not make any sense. One could
object that the same problem might occur with absolute deforestation, be-
cause of the impossibility of observing huge deforestation in a small dis-
trict: absolute deforestation in Cayenne cannot exceed a few square kilome-
ters by definition of the administrative boundaries, whereas in Maripasoula
one could imagine that thousands of square kilometers might be deforested.
However, it is not unlikely to observe a same urban structure (same types
of activities, same population) with very different admnistrative delimita-
tions, as large districts are not large because they have a big potential for
deforestation, but because no immediate historical pressure imposed their
subdivision. Let’s say that a city of 20’000 inhabitants may exist whatever
its territory’s size, with similar pressures and thus similar absolute defor-
estation observed, but that by definition their relative deforestation rates
will necessarily be different.

Forest scarcity might influence deforestation by increasing land prices or
inducing a ’free common good attitude '(Mahapatr and Kant, 2005), but
this variable could be included implicitly as an explanatory variable in the
model in order to take into account land scarcity while still using absolute

10



deforestation as the dependent variable.

2.2 Defining an appropriate resolution: study scale and tech-
nical issues related to sampling

Following Geist and Lambin (2002), no universal driver exist, and differ-
ent deforestation processes may imply a different scale for deforestation. A
recent study on Amazonia (Rosa et al., 2013) used a resolution of 5km x
5km for the variables used in the model. However, using MODIS data at
500m resolution (which would correspond to 100 more pixels for a same
area covered) we were unable to detect any deforestation in French Guiana
because deforestation occurs at much smaller scales in this region, in partic-
ular because of the small demographic pressure and the inexistence of large
scale agriculture. LANDSAT images allow to work at 30m resolution and
to detect medium to small scale deforestation, but in that case the total
number of pixels would be much higher for a same extent, inducing techni-
cal problems (calculation time, storage capacity, etc.). Deforestation maps
resolution must then be consistent with the processes ocurring in a given
area, with a finer resolution needed when deforestation is lower and/or at
smaller scales.

When a high resolution is preferred, then technical issues raise: the huge
number of pixels makes it impossible to consider all of them in the latter
statistical process. To solve this problem, Vieilledent et al. (2013) defined
a minimum theoretical sample size necessary to estimate the deforestation
rates with less than +0.1% error per year, given an observed mean deforesta-
tion rate in the area of interest (in Madagascar) of 1% per year. However,
when deforestation rates are very low, as in the Guiana Shield (rates lower
than 0.1% per year), these approximations cannot be used because the sam-
ple size would need to be almost as big as the total number of pixels to
approach observed deforestation rates with low uncertainties. Moreover,
with very low deforestation rates, random sampling pixels would create a
huge imbalance between classes: not deforested pixels will be overrepre-
sented compared to deforested ones. In that case, the likelihood of a model
would be too much influenced by not deforested pixels, whereas a defor-
estation model should precisely predict the opposite, deforested pixels. In
more concrete terms, a model predicting an absence of deforestation would
be evaluated as a good model, because it would predict well the greatly
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dominant class: no deforestation. A balanced sampling might be preferred
in that case in order to penalize errors in deforestation as well as no defor-
estation classification.

2.3 The need for a distinction between spatial prediction of
deforestation and its intensity

Creating a spatial model of deforestation implies calculating probabilities
of deforestation for a sample of spatial units (pixels). However, we must
question the relevancy of this scale for predicting human induced processes.
If human pressure increases in a given district, deforestation will probably
follow the same trend, but this deforestation will not occur the same way
anywhere. People will settle and create activities where more appropriate,
easier or less costly.

As such, the probability of deforestation computed for each pixel could be
more precisely interpreted as a potential, a risk of deforestation, or as well
as the opportunity cost of settling in a given place compared to another.
This being said, we can operate a distinction between factors influencing
the location of deforestation and the factors influencing its intensity. This
distinction is somewhat artificial because, at local scales, areas not suitable
for deforestation (remote areas for example) will suffer low deforestation.
But at larger scales (national or regional), deforestation will occur first on
more accessible areas, but less favourable zones could be deforested later if
the deforestation pressure continues to increase.

Based on this principle, we can make the assumption that spatial distribu-
tion of deforestation is driven only by geographic and environmental factors
(as well as historical factors that shaped a given region in a particular con-
text, creating existing road network or villages for example), whereas its
intensity (demand for land) is driven only by political and socio-economic
factors. If local demand for land exists, the more suitable areas will be de-
forested first. If local pressures continue to increase, then less suitable areas
will be deforested. When only poor quality land remains, demand might
shift to another area (for example another administrative district, or any
administrative boundary) where easily accessible areas still exist. In that
case we could imagine that population stops to increase in a given district
due to a relocation in neighbouring areas, as a results to its saturation.

12



3 Modelling methods

3.1 Logistic regression for computing a probability of defor-
estation

Logistic (or logit) regressions are common in deforestation models (Over-
mars et al., 2003) and can be very useful for calculating a deforestation risk
(i.e. a potential for deforestation) for each pixel of a given area of interest.

Binary logit regression is useful when it deals with predicting the state of
a given pixel which can be either deforested or not. In this situation, the
response variable (i.e. the dependent variable, here deforestation) can only
take two values, 0 and 1, corresponding to the states deforested or not
deforested, allowing to calculate the probability m; of deforestation of a given
pixel . However, the independent variables can take any positive or negative
value between —oo and +o00, whereas the response variable is binary.

To be coherent with the range of values of each dependent and independent
variable, the logit transformation was introduced:

n; = logit(m;) = log —

1—m;
or "
L e

m; = logit 1(772») =1 e

where 7; is a linear combination of independent variables (see Figure 3 page
19 to graphically observe the correspondence between the probability and
the logit values).

3.2 Random forest algorithm as a pixel classifier

Apart from usual logistic regression, other methods can be used to classify
pixels based on their probability of deforestation. Random Forest (Breiman,
2001) is an example of powerful classifiers based on decision trees. It com-
putes a chosen number of trees forming a ”forest” of trees. During the con-
struction of each tree, the sample (in this case a certain number of deforested
and not deforested pixels) is divided into smaller and smaller sub-samples.
The explanatory variables are used to split these sub-samples, forming at
each branch, more and more homogeneous groups of pixels. When the tree
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is completely grown, each pixel is then classified as deforested or not defor-
ested, forming the leaves of the tree. The "random” part of the algorithm
is due to the fact that:

e a sub-sample (around 2/3) of the complete sample of pixels is used to
build each tree, the remaining part allowing to automatically calculate
error rates (called Out-of-bag error, or OOB error) and a confusion
matrix;

e at each node, a sub-sample of the complete set of explanatory variables
is randomly chosen, to which the best variable for splitting the node
is kept.

The main disadvantage of Random Forest compared to usual logit regression
is the fact that it is not a variable-explicit method, so there is no mathe-
matical formalism able to explain how the method is classifying the data.

However, this technique has a lot of advantages compared to logistic models:

e the algorithm is very flexible and able to fit very sharp increase /
decrease in the probability of deforestation, even in the presence of
noise;

e it is able to implicitly take into account very complex sets of interac-
tions between explanatory variables, which is not the case of general-
ized linear modelling frameworks;

e it is able to display graphically the relationship between each explana-
tory variable of interest and the dependent variable, in a graph called
”partial plot”;

e it automatically calculates robust error rates estimates as mentioned
above;

e it also calculates indices of variables importance, allowing to have a
better understanding of which are the main explanatory variables in-
fluencing the model.

In any case, in the absence of unanimously admitted statistical tests for

validating the model produced by random forest algorithm, it is even more
important to discuss each partial plot and make sure that the relationship
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between each explanatory variable and the dependent variable (here defor-
estation) is interpretable.

As an example, figure 4a page 20 shows the relationship between distance to
closest area previously deforested and a measure of the probability of defor-
estation (the log of the ratio between the number of time a pixel is classified
as 1 and 0 by the forest of decision trees) for a sample of 100’000 deforested
and 100’000 not deforested pixels in French Guiana for the period 2004-
2008. When the value of the index on the y-scale is equal to 0, a pixel has
a same probability of being classified as deforested or not deforested. When
this value is positive, the pixel has a higher probability of being deforested
than not deforested and vice-versa. Here we observe a sharp decrease of the
probability of deforestation when going further from previously deforested
area. This spatial autocorrelation is a major driver of the location of defor-
estation, this process being contagious.

Figure 4b page 20 shows the relationship between distance to nearest road
and the same measure of the probability of deforestation. Here, the pattern
is similar than before but less clear. The probability of deforestation de-
creases less constantly when going further from a road, meaning that some
deforestation might still occur far from roads. This is particularly true in
very remote areas when settlements focus near rivers, or for illegal gold-
mining activities for which inaccessibility is important in order to avoid
police intervention.

Finally, figure 4c page 20 shows the dependance plot of variable slope. In
that case, the pattern is much more complex and difficult to interpret. In-
creasing slope for low values between 0 and around 10% would increase the
probability of classifying a pixel as deforested. For higher slopes, the prob-
ability of deforestation decrease until around 40% and starts to raise again
after that threshold. Here the use of this variable to calibrate a model is
questionable, because this result could be driven by a complex natural pat-
tern but also by an attempt of the algorithm to fit the data better using a
new variable of adjustment, and in a sense over-fitting the data.

15



3.3 Statistical framework for the intensity model

Once a model predicting the deforestation potential for each pixel has been
built, the next step is to compute the intensity of deforestation on a territory
or each area of a given territory, based on political or socio-economic vari-
ables. This intensity of deforestation will then be applied spatially, selecting
a predicted number of pixels to deforest, by decreasing order of deforesta-
tion potential (i.e. probability of deforestation derived from logit model or
random forst for example).

The intensity model focuses on divisions of a territory considered as relevant
for studying a process of interest leading to deforestation, but also taking
into account data availability as such scales. A lot of socio-economic data
exist concerning administrative divisions of a territory. For agricultural or
urban expansion for example, countries districts could be the most relevant
scale, as it is generally at this scale that demographic data or information on
the economic structure are gathered. For foresty or mining, on the contrary,
national policies might prevail on local decisions, obliging to consider these
areas as a whole.

Focusing more on the statistical methodology now, the intensity model has
to take into account the specificity of the variable of interest itself. As
mentionned in 2.1 page 8, considering that absolute deforestation only can
be used as a metric of deforestation, its value (unless considering forest
regrowth) cannot be negative. Moreover, when absolute deforestation is
measured as a sum of deforested pixels, not only its value is always positive
but it should also be an integer. This type of count data can be modelled
using methods like Poisson regression for example.

However, poisson regression is defined by a parameter A equal to the mean
of the value of the dependent variable (here deforestation) and which is as-
sumed to be equal to its variance. This is a strong assumption, because
areas experiencing low deforestation are expected to show low variance, but
increasing deforestation might also increase its variance. This can be due,
for example, to the fact that if dry season is wetter than expected, defor-
estation might not be detected or might be delayed, producing an artificially
low value of deforestation for a given year, and an artificially high value for
the next period. In that case, overdispersion (i.e. increasing variance when
predicted value of the dependent variable increases) can be integrated into

16



the model using quasi-poisson or negative binomial regression (Hoef and
Boveng, 2007).

Let Y be a poisson variable of parameter A\. By definition its mean E(Y)
and variance var(Y') are equal to A. In the case of quasi-poisson now, E(Y)
is still equal to A, but the variance is proportional to A: var(Y) = 6. In
negative-binomial models on the contrary, var(Y) = X + kA? where k is a
multiplicative coefficient. When in the first case the variance is directly pro-
portional to the mean, in the case of negative binomial regression, variance
is a polynomial function of the mean. Following the existing relationship
between mean and variance in the case of heteroskedasticity, one must care-
fully choose between those two types of modelling frameworks. Using a
linear model to fit the relationship between mean and variance and compar-
ing AIC score might contribute to that choice.

An example in French Guiana gives the relationship between observed mean
and variance, and the same relationship modelled by a quasi-poisson regres-
sion and a negative-binomial regression (Figure 5 page 21). Heteroskedas-
ticy is obvious for the observations: variance increase for increasing mean of
deforestation per district. Both models take into account this heteroskedas-
ticity, but in the case of quasi-poisson model, variance is linear to the mean,
contrary to negative-binomial regression where variance is quadratic to the
mean. Graphical observation cannot easily discriminate the best model in
that case, but a comparison of AIC scores gave preference for the negative-
binomial case in that example.
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Conclusion

After reviewing relevant scientific literature concerning spatially explicit de-
forestation models, a certain number of choices can be done in order to
create an appropriate model of deforestation for the Guiana Shield.

The specificities of this region, in terms of forest cover (dominant forest
cover), of drivers (importance of gold-mining), of deforestation scale (mainly
small scale deforestation) and intensity (low deforestation) make it essential
to adapt a methodology to this particular context.

Using equilibrate samples to cope with low deforestation rates, a powerful
classifier like Random Forest (Breiman, 2001) to deal with the complex set
of interactions influencing the location of deforestation, and more usual tools
like poisson or negative-binomial regressions would provide a simple and in-
tuitive framework to obtain a prediction of the most probable location of
future deforestation, and some insights on how political and socio-economic
drivers might affect the intensity of deforestation in the years to come.

The main steps of the modelling process are summarized in the flowchart
below (Figure 6 page 22). The location and the intensity parts of the model
are computed independently, but merge in the final step for combining the
predicted intensity of deforestation (corresponding to the demand for land)
to its spatial expression.

Making the assumption that spatial processes are static (i.e. spatial drivers
of deforestation will not change in the future), it is then possible to focus
more on the intensity part of the model to provide scenarios concerning
future deforestation trends, taking into account changes in demographic
pressure, or socio-economic incentives for deforestation for example.
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Figure 3: Probability as a function of the logit value
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Partial dependance on the distance to previous deforestation
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Figure 4: Partial dependence plots between the probability of deforestation
(measured as the log of the ratio between the number of times a pixel is
classified as deforested versus not-deforested by the forest of decision trees)
and distance to previous deforestation in meters (a), distance to nearest

road in meters (b) and slope in percent (c)
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Mean / Squared residuals relationship for deforestation in French Guiana
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Figure 5: Relationship between observed mean and variance of yearly de-
forestion in all districts of French Guiana (black points), and linear model
predictions for quasi-poisson (blue line) and negative-binomial regressions
(red line). 95% confidence intervals are shown with dashed lines for each
model. Heteroskedasticy is obvious for the observations. Both models take
into account this increase in variance with increasing mean of deforesta-
tion. In the case of quasi-poisson model, variance is linear to the mean. For
negative-binomial regression, variance is quadratic to the mean.
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Figure 6: Flowchart of the modelling process. The location and the intensity parts of the model are computed

independently, but merge in the final step for combining the predicted intensity of deforestation (corresponding
to the demand for land) to its spatial expression.
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